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"To what extent is logic empirical?" is a question that has been often discussed 
in connection with the studies about the foundations of quantum theory. Today 
we are facing not only a variety of logics, but even a variety of quantum logics. 
Hence, the original question seems to have turned to the new one: to what 
extent is it reasonable to look for the "right quantum logic"? 

I N T R O D U C T I O N  

"To  what extent is logic empirical?" is a question that has been deeply 
discussed in the last 30 years, very often in connection with the studies 
about  the logical foundations of  quantum theory (QT). At the very 
beginning of this discussion, the claim that the choice of  "the right logic" 
to be used in a given theoretical situation may depend also on experimental 
data appeared to be a kind of extremistic view, in contrast with a leading 
philosophical tradition according to which a characteristic feature of  logic 
should be its absolute independence from any content. 

These days, an empirical position in logic is generally no longer 
regarded as a "daring heresy." At the same time, we are facing today not 
only a variety of  logics, but even a variety of  quantum logics. As a 
consequence, the original question seems to have turned to the new one: to 
what extent is it reasonable to look for "the right quantum logic"? 

The problem of  how a physical theory can determine a logic has been 
deeply analyzed in the "renaissance period" of the logicoalgebraic ap- 
proaches to QT after the appearence of Mackey's  (1963) Mathematical 
Foundations qf Quantum Mechanics. As is well known, the basic common 
assumption in these approaches appears quite natural: any physical theory 
T determines a collection of  state-event systems (S, E ) ,  where S contains 
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the states that a physical system described by the theory may assume and 
E contains the events that may occur to our system. Such state-event systems, 
in turn, may be interpreted as particular semantic structures that may give 
rise to different logics. 

This construction involves at least two degrees of  freedom: 
1. The structural conditions required for our state-event systems may 

be not uniquely determined by the theory. 
2. Different logics may be associated, according to different methods, 

to one and the same collection of state-event systems. 
The same notion of "logic" has been used in this field somewhat 

ambiguously. According to a way of speaking that is more common in math-  
ematical physics, a logic is often identified with a particular abstract struc- 
ture whose operations admit to be interpreted as logical connectives. Let us 
think of the use of  the term "quan tum logic" for a o--orthomodular poset. 

In the logical tradition, instead, logics are described as more complex 
objects. Generally, a logic L can be determined as a pair consisting of a 
proof-theoretic part  and of a model-theoretic (or semantic) part. The key 
notions are, respectively: 

1. A proof-theoretic consequence relation: 

T t - ~  

(the sentence ~ is provable from the set of  sentences T) 
2. A model-theoretic consequence relation: 

T g ~  

(the sentence ~ is a semantic consequence of the set of  sentences T). 
Different consequence relations may turn out to be equivalent. In such 

situations, one says that they characterize the same logic. A logic L is 
axiomatizable when L admits a proof-theoretic consequence relation I-, 
where the notion of proof is decidable. Further, L is decidable when the 
relation {~} ~-/~ is decidable. 

The logical truths of L are the sentences that are semantic conse- 
quences of  the empty set. 

1. STATE-EVENT SYSTEMS 

Let us first discuss our first degree of freedom, concerning the state- 
event system? According to a minimal interpretation, states may be 

2For a general exposition see Beltrametti and Cassinelli (1981) and Pt~k and Pulmannov~ 
(1991). I will not consider the many terminological differences that can be found in the 
literature. In most cases, translations are obvious. 
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regarded as pieces of  information about physical systems or objects (a kind 
of individual concepts in Leibniz's sense; whereas pure states correspond, to 
a certain extent, to what Leibniz called complete concepts). At the same 
time, events represent properties that may be verified by the objects under 
investigation. The general notion of  property is far from being sharply 
characterized both in the logical and in the philosophical tradition. In the 
case of  our state-event systems, one may adhere to an empirical interpreta- 
tion of  properties (as has been developed, for instance, in the work of 
Foulis and Randall, and in the operational approach to QT). Properties are 
supposed to be generated by means of logical tools (including abstraction) 
on the basis of  a set of primitive questions that can be triggered by a 
measurement apparatus. 

Let u, v, w . . . .  represent elements of S, while a, b, c , . . .  are elements 
of  E. The minimal conditions that are required (and that, usually, are not 
an object of  controversy) are the following: 

1. Vu Va: u(a)~[0, 1] (any state associates a probability-value to any 
event). 

2. Weak extensionality: 

Va, b: Vu[u(a)=u(b)]  =~ a = b  

Vu, v: Va [u(a)=v(a)]  ~ u = v  

In other words: events that are probabilistically indiscernible are 
identified. Similarly for states. 

3. E is closed under a weak complement operation i such that 

VaVu: u(a•  i - u ( a )  

4. E contains a certain event 1 such that 

Vu: u(1) = 1 

Let 0:= 1 • be the impossible event. 

S permits us to define an order relation on E: 

Definition 1.1: 

a -< b ~ Vu [u(a) -< u(b)] 

Definition 1.2. Orthogonality: 

a Z b  ,~  a<-b • 

One can prove: 

Lemma 1.I. The structure (E, <,  • l, 0)  is an involutive bounded 
regular poset. 
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In other words: 
(a) -< is a partial order with maximum 1 and minimum O. 
(b) _L is an involution: 
(ib) a = a -L• 
(iib) a < - b  ~ b l < - a  • 
(c) a l a a n d b  i b =~ a L b (regularity). 

5. A partial sum �9 is defined on E: 
(a) a_l_b ~ a O b ~ E .  
(b) Vu [u(a �9 b) = u(a) + u(b)]. 

This represents a kind of minimal structure that it seems reasonable to 
require for a state-event system. 

Further conditions that may strengthen (S, E )  are the following: 

5*. Additivity: 

a 3-b =~ a O b = s u p ( a , b )  

(the sum of two orthogonal events is their supremum). 
5**. a-Additivity: Let {ai} be a countable sequence of pairwise or- 

thogonal events: 
(a) sup{ai} eE. 
(b) Vu: u(sup{a,}) = ~ i  u(ai). 
6. The noncontradiction principle: 

a l a ~ a = O  

(only the impossible event is orthogonal to itself). 
7. Orthomodularity: 

a <- b ~ 3e [a 3_ c and sup(a, c) = b]. 

8. Weak determinism (S is suffcient and E is unital)" 

a # 0  ~ 3 u [ u ( a ) = l ]  

(any event which is not impossible is satisfied with certainty by at least one 
state). 

9. The order is determined by the certainty domains 

{ u / u ( a ) = l } _ { u / u ( b ) = l }  ~ a < b  

10. The event-poset is a lattice, with other possible "nice" properties, 
like a-completeness, completeness, atomicity, the covering property, dis- 
tributivity, and so on. 

11. The set of the states is a-convex. 
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As is well known, the orthodox sharp approach to QT and the more 
general unsharp approach (Busch, 1985; Busch et al., 1991; Cattaneo, 1993; 
Cattaneo and Laudisa, n.d.; Davies, 1976; Kraus, 1983; Ludwig, 1983) 
have given different answers to the question concerning the validity of our 
conditions. In the orthodox sharp approach, events give rise to a structure 
that is at least a a-orthomodular poset, which is often termed simply a 
quantum logic. Further, ~S, E)  satisfies the ~-additivity, the weak deter- 
minism condition; and the event-order is determined by the certainty 
domains. In the framework of the unsharp approach, instead, events give 
rise only to a bounded regular poset, where the noncontradiction principle 
and the orthomodular property are generally violated. A partial sum G is 
defined (for pairs of orthogonal events); however, a O b is not, generally, 
the supremum of a and b. 

Canonical Hilbert-space exemplifications of both the sharp and the 
unsharp state-event systems can be constructed by taking, respectively, as 
events either the projectors or the effects of the Hilbert space Jq~ (associated 
with the physical system under investigation). At the same time, states are 
identified with the density operators of ~ in both approaches. 

The advantages of the unsharp approach have been illustrated in a 
large literature. From a general point of view, one could say that moving 
to the unsharp approach represents an important step toward a kind of 
"second degree of fuzziness." Namely, in the framework of the sharp 
approach, any event a can be regarded as a kind of "clear" property. 
Whenever a state u assigns to a a probability value different from 1 and 0, 
one can think that the semantic uncertainty involved in such a situation 
totally depends on the ambiguity of the state and not on the ambiguity of 
the property (first degree of fuzziness). In the unsharp approach, instead, 
one takes into account also "genuine ambiguous properties;" an extreme 
case is represented by the semitransparent property 1/2, to which any state 
assigns probability 1/2. This second degree of fuzziness may be regarded as 
depending on the accuracy of the measurement (which triggers the prop- 
erty), and also on the accuracy involved in the operational definitions for 
the physical quantities to which our property refers. 

2. SHARP AND UNSHARP QUANTUM LOGICS 

Let us now turn to the question concerning the logics that can be 
associated to collections of state-event systems. In the logical tradition, 
generally a logic L can be characterized by means of two privileged kinds 
of semantics: 

1. An algebraic semantics. 
2. A possible worm semantics (called also Kripke semantics). 
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These semantics give different answers to the question, "What  does it 
mean to interpret a formal language?" 

In the algebraic approach, the basic idea is that interpreting a language 
essentially means associating to any sentence of the language an abstract 
truth-value or more generally an abstract meaning, identified as an element 
of a convenient algebraic structure. Hence, generally, an algebraic model 
for a logic L will have the form 

where d is an abstract structure belonging to a class K of structures 
(satisfying the same set of conditions) and v transforms the sentences into 
elements of d ,  preserving the logical form (in other words, logical connec- 
tives are interpreted as operations of the structure). We require that a 
partial order relation < is defined in any d .  The truths of the model are 
the sentences that receive value 1. 

The semantic consequence relation is then defined as follows: 

Definition 2.1. T ~ ~ (~ is a semantic consequence of T) iff for any 
model JC{ = (W, v)  and any element a of d 

if for any sentence fl of T, a<-v(fi), t h en a -<v (a )  

In the possible world semantics, instead, one assumes that interpreting 
a language essentially means associating to any sentence c~ the set of the 
possible worlds (or situations) where the sentence e certainly holds. This set, 
which represents the extensional meaning of c~, is usually called the proposi- 
tion associated to c~ (or simply the proposition of  ~). 

Hence, generally, a Kripke model will have the form 

Jg = (I, R~ . . . .  , Rm,  o I . . . .  , On, H ,  v )  

I is a nonempty set of possible worlds, possibly correlated by 
relations Ri and operations o.1.. In most cases, we have only one 
relation, called the aceessibility relation. 

2. H is a set of sets of possible worlds, representing possible proposi- 
tions of the sentences. Any single proposition and the total set II 
must satisfy convenient closure conditions that depend on the 
particular logic. 

3. v (the interpretation function) transforms any sentence into a propo- 
sition in I'I, preserving the logical form. 

Given a model d / a n d  a world i of ~{, i is said to verify a sentence c~ 
(i ~ e) iff i belongs to the proposition v(~). The truths of the model are the 
sentences that are verified by any world. 

where: 

1. 
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Any class K of all models JC{ satisfying the same set of conditions 
determines a semantic consequence relation defined as follows: 

Definition 2.2. T ~ c~ (9~ is a semantic consequence of T) iff for any 
model og and any world i of  Jd 

if i verifies all the sentences in T, then i verifies also c~ 

I t  is interesting to consider also a variant of Kripke semantics, which 
was first applied to QT by Bugajski, Cattaneo, and Nistic6. We might call 
this approach a many-valued possible world semantics. The basic idea is a 
generalization of the notion of proposition. As we have seen, in the 
standard Kripke semantics the proposition of  a sentence c~ is a set of 
worlds: the worlds where c~ certainly holds. This automatically determines 
the set of  the worlds where ~ certainly does not hold (in other words, the 
meaning of the negation of e). Intermediate truth-values are not consid- 
ered. In the many-valued possible world semantics, instead, one fixes, at the 
very beginning, a set of truth-values W_~ [0, 1] and any proposition is 
represented as a function which associates to any truth-value in W a 
convenient set of worlds (the worlds where our sentence holds with that 
particular truth-value). As a consequence, the total set of propositions l-I 
turns out to behave like a family of fuzzy sets of worlds. 

State-event systems can be transformed both into algebraic and Krip- 
kean models in a natural way. Given (S, E ) ,  an algebraic model ( d ,  v)  
can be constructed by taking as s~' the algebraic structure of the events and 
by assuming that the interpretation function v follows the intended physical 
meaning of the atomic sentences. At the same time, a Kripke model 
( / ,  R, I-I, v )  can be obtained by identifying the set of worlds I with the set 
of the states and by assuming that two states u and v are accessible (Ruv) 
iff they are not strongly discernible (there exists no event a such that 
u(a) = 1 and v(a) = 0); further, the set II of the propositions is determined 
by the set of events, and the interpretation function v follows the intended 
physical meaning of the atomic sentences. 

Alternatively, a Kripke model can be obtained also by identifying the 
possible worlds with the events, and the accessibility relation with the 
nonorthogonality relation. From an intuitive point of view, in this case, our 
worlds will represent possible descriptions of physical systems, which are 
generally only partial. 

What about the quantum logics that can be generated by these 
methods? It seems natural to imagine the "quantum logical population" as 
a kind of "Ptolemaic universe" whose center is occupied by Birkhoff-von 
Neumann orthodox quantum logic (QL), in the same way as the total logical 
universe has in its center classical logic. 
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QL represents a singularity in the class of all logics. Many metalogical 
problems have been solved. However, some questions seem to be stub- 
bornly resistant to any attempt of solution. Among the solved problems let 
us mention at least the following results: 

(a) QL can be characterized both in the algebraic and in the Kripke 
semantics. Algebraically, it is characterized by the class of all models 
< d ,  v>, where d is an orthomodular lattice and v interprets the logical 
connectives in the expected way: 

v(--7/3) = v(/~)• v(/~ /x 7) = inf({/~, 7}) 

(where • and inf are, respectively, the orthocomplement and the infimum 
in ~4). 

In the Kripke semantics, QL is characterized by the class of all models 

<LR, II, v> 

where: 

1. R is a reflexive and symmetrical relation. A possible proposition of 
the model is a maximal set of worlds X, which contains all and only 
the worlds i, whose accessible worlds are accessible to at least one 
element of X. In other words 

i e X iff for any j accessible to i there exists a k accessible to j such that k e X 

For any set of worlds X, let X • = {ieI/Vj (if Rtj, then jCX)}. 

2. II is a set of possible propositions such that 
2.1. FI contains ~ ,  I; and is closed under the set-theoretic intersection 

and under the operation • 
2.2. II satisfies the orthomodular property: 

X c~(X ~(X n Y)•177 ~_ Y 

3. v(-7/~) = v(/~)• v(/~/ ,  7) = v(/~) ~v(~) .  

As proved by Goldblatt (1984), the orthomodularity of the set of 
propositions cannot be expressed as an elementary property of the accessi- 
bility relation. 

(b) QL is axiomatizable. Many axiomatizations are known: in the 
logicistic style, as a set of rules, in the natural deduction style, in the sequent 
style (e.g., Dalla Chiara, 1986; Dishkant, 1972; Gibbins, 1987; Goldblatt, 
1974; Nishimura, 1980). 

(c) QL is not characterized by the class of all algebraic models based 
on a Hilbert lattice (the lattice of the projectors in a separable complex 
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Hilbert space). 3 Hence QL is definitely more general with respect to its 
historical and physical origin. 

Among the questions that are still unsolved, let us mention at least the 
following: 

(a) Is QL decidable? 
(b) Does QL admit the finite model property? In other words, if a 

sentence is not a quantum logical truth, is there any finite model where our 
sentence is not true? A positive answer to the finite model property would 
automatically provide a positive answer to the decidability question, but 
not vice versa. 

(c) Is the set of all possible propositions in the Kripke canonical 
model of QL orthomodular? (The worlds of the canonical model are all the 
noncontradictory and deductive closed sets of sentences T; whereas two 
worlds T and T' are accessible iff whenever T contains a sentence ~, T' 
does not contain its negation -le). This problem is correlated to the critical 
question of whether any orthomodular lattice is embeddable into a com- 
plete orthomodular lattice. Only partial answers are known. 

(d) Is the logic characterized by all Hilbert lattices axiomatizable? 
By dropping the orthomodular condition (both in the algebraic and 

the Kripke semantics), one may obtain weaker forms of quantum logic that 
turn out to be more tractable from a metalogical point of view. Two 
examples are represented respectively by minimal quantum logic (MQL) 
(called also orthologic), which is characterized by the class of all algebraic 
models based on ortholattices, and paraconsistent quantum logic (PQL), 
characterized by the class of all algebraic models based on involutive 
bounded lattices (possibly violating the noncontradiction and the excluded 
middle principles). Both logics satisfy the finite model property. PQL is a 
common sublogic of the Brouwer-Zadeh logics [which represent natural 
logical abstractions from the unsharp approach to QT (Cattaneo, 1993; 
Giuntini, 1993)] and of t_,ukasiewicz infinite many-valued logic [whose 
application to QT has been studied by Mundici and in the fuzzy quantum 
logical approaches (Mundici, 1993; Pykacz, 1993)]. 

So far we have considered only examples of quantum logics where 
conjunctions and disjunctions are supposed to be always defined. However, 
the experimental and the probabilistic meaning of conjunctions of incom- 
patible propositions in QT has been often put in question. How to 
construct logics where we admit that conjunctions and disjunctions are 
possibly meaningless? For instance, how to give a natural semantic charac- 
terization for a logic corresponding to the class of all orthomodular posets 
or to the class of all orthoalgebras? Let us call these logics, respectively, 

3This has been proved by Greechie (1971) and Kalmbach (1974). 
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strong partial quantum logic (SPaQL) and weak partial quantum logic 
(WPaQL). Are SPaQL and WPaQL axiomatizable? The question admits a 
positive answer (Foulis et al., n.d.). An axiomatizable logic that turns out 
to be slightly stronger than SPaQL is transitive partial classical logic 
(TPaCL), characterized by the class of all models based on transitive 
partial Boolean algebras. TPaCL is, of course, stronger than partial classi- 
cal logic (PaCL), characterized by the class of all models based on partial 
Boolean algebras. At the same time, PaCL and the partial quantum logics 
turn out to be uncomparable. 

3. CONCLUSIONS 

Some general questions that have been often discussed in connection 
with (or against) quantum logic are the following: 

(a) Why quantum logics? 
(b) Are quantum logics helpful to solve the difficulties of QT? 
(c) Are quantum logics "real logics"? And how is their use compatible 

with the mathematical formalism of QT, based on classical logic? 
My answer to these questions is, in a sense, trivial [and close to a 

position that Gibbins (1991) has defined "a quietist view of quantum 
logic"]. 

It seems to me that quantum logics are not to be regarded as a kind 
of "clue," capable of solving the main physical and epistemological 
difficulties of QT. This was perhaps an illusion of some pioneering workers 
in quantum logic. Let us think of the attempts to recover a realistic 
interpretation of QT based on the properties of the quantum logical 
connectives. 

Why quantum logics? Simply because "quantum logics are there!" 
They seem to be deeply incorporated in the abstract structures generated by 
QT. Quantum logics are, without any doubt, logics. For, they satisfy all the 
canonical conditions that the present community of logicians require in 
order to call a given abstract object a logic. The compresence of different 
logics in one and the same theory may give, prima facie, a feeling of 
uneasiness. However, the splitting of the traditional connectives (not, and, 
or , . . . )  into different logical constants, with different meanings and uses, is 
today a well-accepted logical phenomenon, which is in no way specific of 
QT. 

In this paper, I have considered only quantum logics at the sentential 
level. From a strictly logical point of view, first-order extensions of some 
quantum logics (for instance, orthodox quantum logic) are not problem- 
atic. However, formidable problems arise at the interpretation level when 
we admit that the domains of our first-order models contain physical 
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objects.  This leads to ha rd  quest ions,  concerning,  for  instance,  the concepts  
o f  identity and  genidentity,  the logical  and  on to log ica l  s tatus o f  virtual 
particles, and  so on. A lot  o f  in teres t ing semant ic  analysis  has been done  in 
this field, accord ing  to more  or  less fo rmal  me thods  (e.g.,  van Fraassen ,  
1991; Krause ,  1992; Caste l lani  and  Mi t te l s taed t ,  n.d.; Da l l a  Ch ia r a  and 
T o r a l d o  di F ranc ia ,  1993). However ,  we are still far  f rom definite results,  
and  much  fur ther  work  will p r o b a b l y  be required.  
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